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CASCADE PROCESSES AND FRACTALS IN TURBULENCE 

A. G. Bershadskii UDC 532.517.4 

The idea of homogeneity is now giving way to the less restrictive idea of fractal self- 
similarity (see, for example, [i-4]). Cascade models, which have been used successfully for 
studying homogeneous turbulence, could also be useful for studying fractal turbulence. On 
the other hand, these cascade modelscan be improved by taking into account the fractal struc- 
ture of real turbulence. A great deal of experimental material has now been accumulated. 
This material needs to be organized and interpreted. In the present paper we examine some 
aspects of cascade processes taking into account the fractal structure of turbulence. First, 
we establish a relation between the form of the energy spectral density in the scaling inter- 
val and the fractal dimension of the surface of the hydrodynamic fields. This relation is 
important, in particular, for atmospheric turbulence and is confirmed by direct observations 
of atmospheric hydrodynamic fields, performed by different authors. An analogous investiga- 
tion was also performed for two-dimensional turbulence, the computational results for which 
are confirmed by comparing with oceanographic computational data. Second, a relation between 
the constant in the Kolmogorov-Obukhov spectral law and the intermittency coefficient is 
established by taking into account the fractal structure. 

Suppose that when turbulence arises it has a patchy character, i.e., the nonturbulent 
region contains separate subregions occupied with turbulent fluid [5] (criteria for dis- 
tinguishing between the subregions are given, for example, in [6]). Since the fluid par- 
ticles in the turbulent liquid strive to move away from each other [7, 8], one would expect 
that in time these regions will expand on the average. Moreover, this property of fluid 
particles in a turbulent liquid should, in general, cause the turbulent part of the liquid 
to strive constantly to increase the total area of the boundary separating it from the non- 
turbulent fluid. Is this process unbounded or can it saturate? If a self-similar situation 
is established, then the total area of the surface separating the turbulent liquid from the 
nonturbulent liquid will approach infinity, and this surface will become a fractal with frac- 
tal dimension D a > 2 (in three-dimensional space). 

We introduce the probability density p(s for encountering a turbulent subregion with 
characteristic size s By definition of the probability density the total area separating 
the turbulent and nonturbulent regions in the interval of self-similarity is given by 
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S ,.-, S p (l) 12 dl, 

where  L and q a r e  t h e  uppe r  and lower  l i m i t s  o f  t h e  s e l f - s i m i l a r i t y  i n t e r v a l .  
i n t e r v a l  t h e  d i s t r i b u t i o n  p ( s  f o i l o w s  a power law,  i . e . ,  

then we obtain from Eq. (i) 

If i n  this 

( l )  

p(O--~ W ,  (2)  

S N (a--'=" ~ 

S i n c e  we a r e  i n t e r e s t e d  o n l y  in  t h e  e x p o n e n t s  and d i m e n s i o n a l  c o n s i d e r a t i o n s  a r e  no t  u s e d ,  
we employ an a p p r o x i m a t e  form o f  t h e  f o r m u l a s ,  where  p o s s i b l e ,  in  o r d e r  t o  s i m p l i f y  t h e  
e x p r e s s i o n s .  Th i s  w i l l  n o t  a f f e c t  t h e  a c c u r a c y  w i t h  which  t h e  e x p o n e n t s  a r e  d e t e r m i n e d .  

U s u a l l y  L ~ q. For  t h i s  r e a s o n ,  f o r  x < 3 

S ,-, La-X/(3 - -  x)~ (4 )  

and for x > 3 

i . e . ,  f o r  x > 3 in  t h e  s e l f - s i m i l a r  a s y m p t o t i c  r a n g e ,  when ~/L + 0, S § ~; i n  o t h e r  words ,  
t h e  t o t a l  a r e a  o f  t h e  s u r f a c e  s e p a r a t i n g  t h e  t u r b u l e n t  and n o n t u r b u l e n t  f l u i d s  in  t h e  s e l f -  
s i m i l a r i t y  i n t e r v a l  f o r  x > 3 w i l l  become f r a c t a l .  For  a d i s t r i b u t i o n  o f  t u r b u l e n t :  r e g i o n s  
o v e r  s c a l e s  o f  t h e  form (2)  w i t h  x > 3 a f r a c t a l  s u r f a c e  s t r u c t u r e  w i l l  fo rm ( i n  t h e  s e l f -  
s i m i l a r i t y  i n t e r v a l ) .  

I t  i s  n o t  d i f f i c u l t  t o  r e l a t e  i t s  q u a n t i t a t i v e  c h a r a c t e r i s t i c ,  i . e . ,  t h e  f r a c t a l  d imen-  
s i o n  D a o f  t h e  i n t e r f a c e ,  w i t h  t h e  d i s t r i b u t i o n  ( 2 ) .  On t h e  one hand ,  t h e  a s y m p t o t i c  be-  
h a v i o r  o f  t h e  f r a c t a l  s u r f a c e s  i s  known 

S ..-, (L/~) D~ ( 6 )  

( i n  t h r e e - d i m e n s i o n a l  s p a c e ) ,  w h i l e  on t h e  o t h e r  hand i t  f o l l o w s  f rom Eq. (5)  t h a t  

s ..~ ( L ~ F ' I  

Therefore, 

x -- D a q- I, (7)  

i.e., in the self-similarity interval the distribution of turbulent regions over their size 
scales has the form 

p (l) ~ l -(~~ (8) 

By d e f i n i t i o n  o f  t h e  p r o b a b i l i t y  d e n s i t y  p ( s  t h e  t o t a l  volume o c c u p i e d  by t h e  t u r b u l e n t  
s u b r e g i o n s  whose c h a r a c t e r i s t i c  d i m e n s i o n s  f a l l  w i t h i n  t h e  s e l f - s i m i l a r i t y  i n t e r v a l  i s  g i v e n  
by t h e  f o r m u l a  

L 

V = J P ( 0  13dl. ( 9 )  
n 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  (8 )  i n t o  Eq. (9)  we o b t a i n  

vN L~ _ (10) 

If in the self-similarity interval the total energy of the turbulent liquid W is additive 
over the turbulent regions, then W ~ V and hence 

w ~  -- (11) 

On the other hand, if in the self-similarity interval the spectral density of the energy is given by 

E ( ~ k  -~, (12)  

w , , ,  j" E( )dt  L [ t  - -  
L--1 

(13) 

then 

�9 4 5  



Then we find from the relations (ii) and (12) 

4 -- a --~ O o. (14) 

This formula relates the scaling exponent in the spectral density of the energy to the fractal 
dimension of the interface of the turbulent and nonturbulent fluids in the self-similarity in- 
terval. 

The most familiar value of ~ is 5/3 (Kolmogorov-Obukhov law [7, 8]), for which we obtain 
from Eq. (14) 

D~ ~ 7/3. ( 1 5 )  

The  f r a c t a l  d i m e n s i o n  o f  c l o u d  s u r f a c e s  h a s  b e e n  m e a s u r e d  i n  a n u m b e r  o f  e x p e r i m e n t s  
a n d  v a l u e s  r i g h t  up  t o  ~10 s km 2 ( w i t h  v e r y  l a r g e  R e y n o l d s  n u m b e r s  [ 9 ] )  h a v e  b e e n  o b t a i n e d .  
In different experiments, performed with the help of a satellite in the infrared region of 
the spectrum and radar observations, values D~ z 7/3 have been obtained. This can serve as 
a confirmation of what we have said above as well as evidence that the Kolmogorov-Obukhov 
law (~ = 5/3) is satisfied in atmospheric processes [see Eq. (14)]. 

Two-dimensional turbulence is under intensive study [10, ii]. For it the formulas re- 
lating D and ~ are somewhat different. If the turbulence energy is additive, then we find, 
analogously to the formula (14), 

D~ = 3 - -  a .  ( 1 6 )  

Then with ~ = 5/3 for two-dimensional turbulence the fractal dimension of the interface 
between the turbulent and nonturbulent fluids is Ds = 4/3. Such a fractal dimension has been 
observed in experiments performed in the Kuroshio Current [12].* In two-dimensional tur- 
bulence the situation when the enstrophy (mean-square vorticity; in the two-dimensional 
case the enstrophy is also an integral of the motion [10]), and not the kinetic energy is 
additive is also of great interest. 

The part of the enstrophy concentrated in scales falling within the self-similarity 
interval is 

~--i 

Q, N ~ k2E (k) dk N L ~-3 [ t  - -  (~/L)~-3].  ( 1 7 )  
L--1 

I f  i n  t h i s  i n t e r v a l  t h e  e n s t r o p h y  i s  a d d i t i v e ,  t h e n  

L 

(18) Q* ~ .i 9 (l) l 3 dl ~. L 

Then we obtain from Eqs. (17) and (18) 

D~ ~ 5 - -  a .  (19) 

I n  t h e  t w o - d i m e n s i o n a l  c a s e  I < D o ~< 2 ; a s  t u r b u l e n c e  d e v e l o p s  o n e  c a n  e x p e c t  t h a t  D a 
will increase from 1 to 2, i.e., from maximum uniformity to maximum nonuniformity. Then we 
conclude from Eq. (19) that as the two-dimensional turbulence develops the value of = will 
decrease from 4 to 3 as D a increases from 1 to 2. In this sense the numerical experiment 
described in [ii] is interesting. The evolution of the exponent in this experiment is shown 
in Fig. i, which is taken from [ii]. Consider the self-similar process of cascade fragmen- 
tation of eddies [8, 13]. Some laminar, hydrodynamically unstable [8] eddy, formed as a 
result of fragmentation of a larger eddy (at the intermediate stage of this process), will 
itself decay into still smaller eddies. The process of scale reduction continues q times 
[13]. Some of the eddies formed as a result of such fragmentation become turbulent (for 
this reason, they are more stable and are not subject to decay). The other laminar eddies 
formed are unstable and decay into smaller eddies. For them, in turn, the entire process 
is repeated until the scale of the eddies formed is sufficiently small that the eddies are 
stabilized by molecular viscosity. This scheme roughly takes into account intermittency, 
since turbulent and laminar eddies are present at any stage Of a self-similar cascade (the 
specific mechanism by which the eddies become turbulent as they decay is not important for 
what follows). 

*I thank A. Provensal for information about the experiments of [12]. 
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Fig. 1 

If the multiplicity of the fragmentation scale is equal to q, then after the first frag- 
mentation approximately qd secondary eddies are formed (d is the dimension of the space in 
which the process occurs). Of them, yqd eddies are turbulent and stable, while (i - y)qd 
eddies are laminar and unstable. The unstable eddies decay with the same multiplicity of 
the fragmentation scale q and with the same intermittency constant y. In the process, there 
now form yqd(qd _ yqd) turbulent eddies of the next order, analogously yqd(qd _ yqd)2 tur- 
bulent eddies in the next order in the cascade, etc. In general, to the scale s = q-n 
(L is the initial length scale) there correspond yqd(qd _ yqd)n-1 turbulent eddies. Thus 
there is established a distribution of turbulent eddies over scale 

N (In) N l J ,  ( 2 0 )  

where 

/ = In qa(l  - -  ?)/in q. (21) 

Switching to a continuous description [ in  § s and N(s n) § p(s we obtain 

9(0  "~ 1-]-L (22) 

From Eqs. (8 ) ,  (21) ,  and (22) we o b t a i n  

D~ = In q d ( l - - ? ) / l n  q,, (23) 

i.e., in this model Do, q, and y are related with one another. If D a and u are fixed, then 
from the formula (23) we can find the scale fragmentation multiplicity of this cascade pro- 
cess in the form 

q =  ( I - - ? ) L  (24) 

Here 

z = I / ( D ~  - -  d ) .  (25) 

The formulas (24) and (25) could be helpful for determining the relation between the constant 
c in the Kolmogorov-Obukhov spectral law 

E(k)  = ~ / ~ k - 5 / 3  (26) 

and the intermittency coefficient u A relation between c and q was obtained in [13]: 

q~/3 3_~/3 (27) C--~q4/9 (q2/3 __ t) 

S u b s t i t u t i n g  i n t o  Eq. (27) the  formulas  (24) and (25) ,  we f i n d  

c = ( t _ 7 / z l 9  (l _~)2~/a 3_2/~o [(l --V)~z/3--11 (28) 

We ob t a ined  p r e v i o u s l y  D o = 7 / 3  with  d = 3 f o r  t h e  case  when the  Kolmogorov-Obukhov 
s p e c t r a l  law i s  s a t i s f i e d .  S u b s t i t u t i n g  t h e s e  va lues  i n t o  gq. (28) we o b t a i n  

c(7) = 3 -2 /3 /? ( t  - -  7)2/~. ( 2 9 )  

It is obvious that this formula is not applicable near the limits of the range of y, 
i.e., near y = 0 and ~ = i. However, at the minimum c = 1.48 at y = 0.6, the function (29) 
increases in the interval 0.4 < y < 0.8 by only 15%, i.e., in the interval 0.4 < y < 0.8 the 
relation (29) may hold. Since c and y are measurable quantities, Eq. (29) on this interval 
can be checked experimentally. We note that measurements of the dependence c(y) in a boundary 
layer, wakes, and jets are not suitable for checking Eq. (29), since intermittency associated 
with the "outer" limit of turbulence is important in them (see, for example, [14]). Here 
measurements in the atmosphere and ocean would be very interesting for checking Eq. (29). 
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HYDRAULIC RESISTANCE OF SWIRL CHAMBERS WITH A FLUID LAYER 

M. A. Gol'dshtik and S. S. Dashin UDC 532.55 

The industrial use of swirl chambers (SCs) is hampered by inadequate study of a number 
of questions, including determination of the hydraulic resistance AP 0 of SCs containing a 
fluid layer. This question has been discussed many times in the literature. Thus in [i-3] 
the following relations are proposed for SCs whose housing is stationary and in which gas 
spins the fluid layer: 

AP = 2Apo/ (~w~)  = 1 ( 1 ) 

where p" is the gas density and W" is the velocity of the gas between the guide vanes; 

Ap = o,s; ( 2 )  

AP = 23k (3) 

where k = s~, s is the relative flow area, q = h/r 0, and h and r 0 are the height and radius 
of the guide vanes. 

The values of the hydraulic resistance calculated from Eqs. (1)-(3) cannot be compared 
with the experimental data of [I, 2], since the geometric dimensions of the SC are not given 
there. At the same time these values differ by several times from the experimental data of 
[3]. 

In [4] the following relations are given for calculating the hydraulic resistance of the 
fluid layer in application to SCs with a stationary housing and gas-spun fluid layer: 
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